Zero-field Splitting and Local Lattice Distortions for Fe^{3+} Ions in Some I_b -III $_b$ -VI $_2$ Semiconductors

Wen-Chen Zheng^{a,b,d}, Hui-Ning Dong^{a,c}, Sheng Tang^a, and Jian Zi^{b,d}

^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
^b International Centre for Materials Physics, Chinese Academy of Sciences,
Shenyang 110016, P. R. China

^c Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, P. R. China ^d Surface Physics Laboratory (National Key Lab), Fudan University, Shanghai 200433, P. R. China

Reprint requests to Prof. W.-C. Z.; Fax: +86-28-85416050

Z. Naturforsch. **59a**, 100 – 102 (2004); received April 17, 2003

The EPR zero-field splitting D for Fe³⁺ ions in some I_b -III_b-VI₂ semiconductors is calculated with the superposition model. The calculated D values, when using the local rotation angles $\tau(Fe^{3+})$ for Fe³⁺ in CuGaS₂ and AgGaS₂ crystals, are consistent with the observed values, whereas for Fe³⁺ in CuAlS₂ crystal they are not. The calculated results are discussed. The local lattice distortions except the local rotation angles τ for Fe³⁺ in CuAlS₂ are suggested.

Key words: Electron Paramagnetic Resonance; Local Lattice Distortion; Superposition Model; Fe^{3+} ; $CuMS_2(M=Al,Ga,In)$; $AgGaS_2$.